Family Shopping Recommendation System Using User Profile and Behavior Data
نویسنده
چکیده
With the arrival of the big data era, recommendation system has been a hot technology for enterprises to streamline their sales. Recommendation algorithms for individual users have been extensively studied over the past decade. Most existing recommendation systems also focus on individual user recommendations, however in many daily activities, items are recommended to the groups not one person. As an effective means to solve the problem of group recommendation problem, we extend the single user recommendation to group recommendation. Specifically we propose a novel approach for familybased shopping recommendation system. We use the dataset from the real shopping mall consisting of shopping records table, client-profile table and family relationship table. Our algorithm integrates user behavior similarity and user profile similarity to build the user based collaborative filtering model. We evaluate our approach on a real-world shopping mall dataset.
منابع مشابه
Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملA product Search System for women adjusting amount of browsed items
Women take relatively longer time for shopping comparing with men. This paper presents a system for product retrieval and recommendation based on psychology of women’s shopping activity, and an implementation of the system for apparel products. This system supposes products which pre-defined keywords are assigned, and icons representing the combination of the keywords. It acts real shopping beh...
متن کاملContext and Customer Behavior in Recommendation
The last few years have seen an increased interest in incorporating context within recommender systems. However, little empirical evidence has emerged to support the premise that context can actually improve recommendation accuracy. Indeed little agreement exists as to what represents the context of a user or indeed how such context should be used within a recommendation strategy. In this paper...
متن کاملDistributed Vector Representation Of Shopping Items, The Customer And Shopping Cart To Build A Three Fold Recommendation System
The main idea of this paper is to represent shopping items through vectors because these vectors act as the base for building embeddings for customers and shopping carts. Also, these vectors are input to the mathematical models that act as either a recommendation engine or help in targeting potential customers. We have used exponential family embeddings as the tool to construct two basic vector...
متن کاملسیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.07289 شماره
صفحات -
تاریخ انتشار 2017